

Evaluating the Implementation of an Enhanced Recovery After Surgery Protocol for Colorectal Surgery at a Midwestern Community Hospital

Jereme Froehlich, SRNA
Samantha Kirstein, SRNA

Faculty Advisor:
Stephen A. Flaherty, CRNA, PhD

Presenters

Jereme Froehlich

Samantha Kirstein

Presentation Objectives

- Define Enhanced Recovery After Surgery (ERAS) protocols and identify current evidence-based recommendations.
- Assess the impact of a colorectal ERAS protocol on hospital length of stay, 30-day readmission rates, and postoperative opioid use using a retrospective review of cohort data.
- Propose recommendations to support protocol compliance.

Background

- Prior to ERAS protocols, Colorectal surgery has been associated with significant morbidity and prolonged length of stay (LOS).
 - Postoperative complications after colorectal surgery resulted in:
 - 106% increase in hospital LOS (10.3 vs. 5.0 days; $P < 0.0001$)
 - 91% increase in mean hospitalization cost (\$77,015.24 vs. \$40,258.30; $P < 0.0001$) (Ma et al., 2019).
- Enhanced Recovery After Surgery (ERAS) protocols have demonstrated the ability to:
 - Reduced overall morbidity [relative ratio (RR) = 0.60, (95 % CI 0.46-0.76)]
 - Shortened hospital LOS (weighted mean differences (WMD) = -2.28 days [95 % CI -3.09 to -1.47]), without increasing readmission rates (Greco et al., 2014).
 - Net health system savings of \$1768 (range: \$920–\$2619) per patient (Thanh et al., 2016).
- Northwestern Medicine Kishwaukee Hospital (NMKH), a midwestern community hospital, implemented an ERAS protocol for colorectal surgery patients, but the protocol's impact on patient outcomes has not been previously evaluated.

Significance

- 600,000 colorectal surgical procedures are performed in the United States annually (The Society of American Gastrointestinal and Endoscopic Surgeons, 2015)
- Colorectal surgery patients experience increased morbidity compared to other general surgery subspecialties (Tevis & Kennedy, 2016)
- 2005 - the first evidence-based consensus guideline for colonic surgery patients were published
- Positive outcomes of ERAS lead to further adoption
- 2018 - ERAS protocol was implemented at NMKH

ERAS at NMKH

Day of Surgery

- Multimodal analgesia premed
 - Acetaminophen 1g PO
 - Ibuprofen 600 mg PO
- Drink clear liquids up to 3 hours before surgical start time
- Entereg (12mg) in pre-op area 0-3 hours before surgery

Reversal

- Sugammadex IV

Intraoperative Anesthesia

- Pre-induction Checklist
 - SCDS attached and running
- TIVA for patients with a significant history of PONV.
 - BIS 40-60
- Ventilation:
 - 6-8 ml/kg
 - PEEP 5-10 cm H₂O
 - Expansion breaths
- Fluids. Goal: 1-5 ml/kg/hr.
- Dexamethasone: 0.1 mg/kg
- Ketamine: 0.5 mg/kg IV

Pain Management

- Epidural, TAP block or lidocaine infusion
- Ketorolac 15-30 mg IV
- Tylenol 1000 mg IV

Postoperative PACU

Prophylaxis for postoperative nausea/vomiting (PONV)

- Dexamethasone 4 mg IV & Ondansetron 4mg IV
 - If history of PONV despite Scopolamine patch → propofol IV infusion during case (25-30 mcg/kg/min)
- Intraoperative normothermia ($>36^{\circ}$ C) upon arrival to PACU
- Intraoperative euglycemia for diabetes (Goal BS < 200 mg/dL)
 - BS check q2 hours intraoperatively
 - Treat with sliding scale insulin with IV regular insulin if BS > 180 mg/dL
- Re-dosing of antibiotics as appropriate based on antibiotic redosing schedule
- Avoid nasogastric tubes and drains
 - Remove OGT prior to arousal and extubation
 - TAP block done in OR

- Care per usual routine
- PONV protocol
- Postoperative Analgesia
 - Anesthesiologist's discretion

Aims of Project

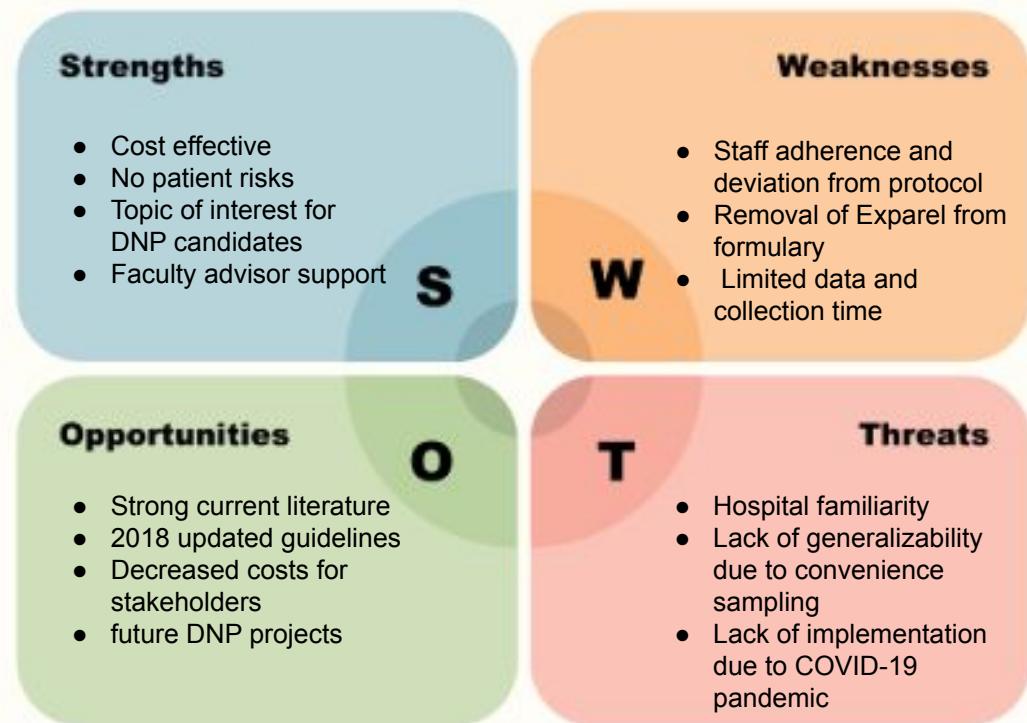
- Evaluation of implemented ERAS protocol on patient outcomes
 - Opioid use and pain burden of the patients
 - Length of stay (LOS)
 - 30-day readmission rates
- Evaluation of protocol compliance
- Comparison of two local anesthetics used for transversus abdominis plane (TAP) blocks: Exparel (liposomal bupivacaine) vs. Ropivacaine
- Offer NMKH recommendations to enhance protocol compliance.

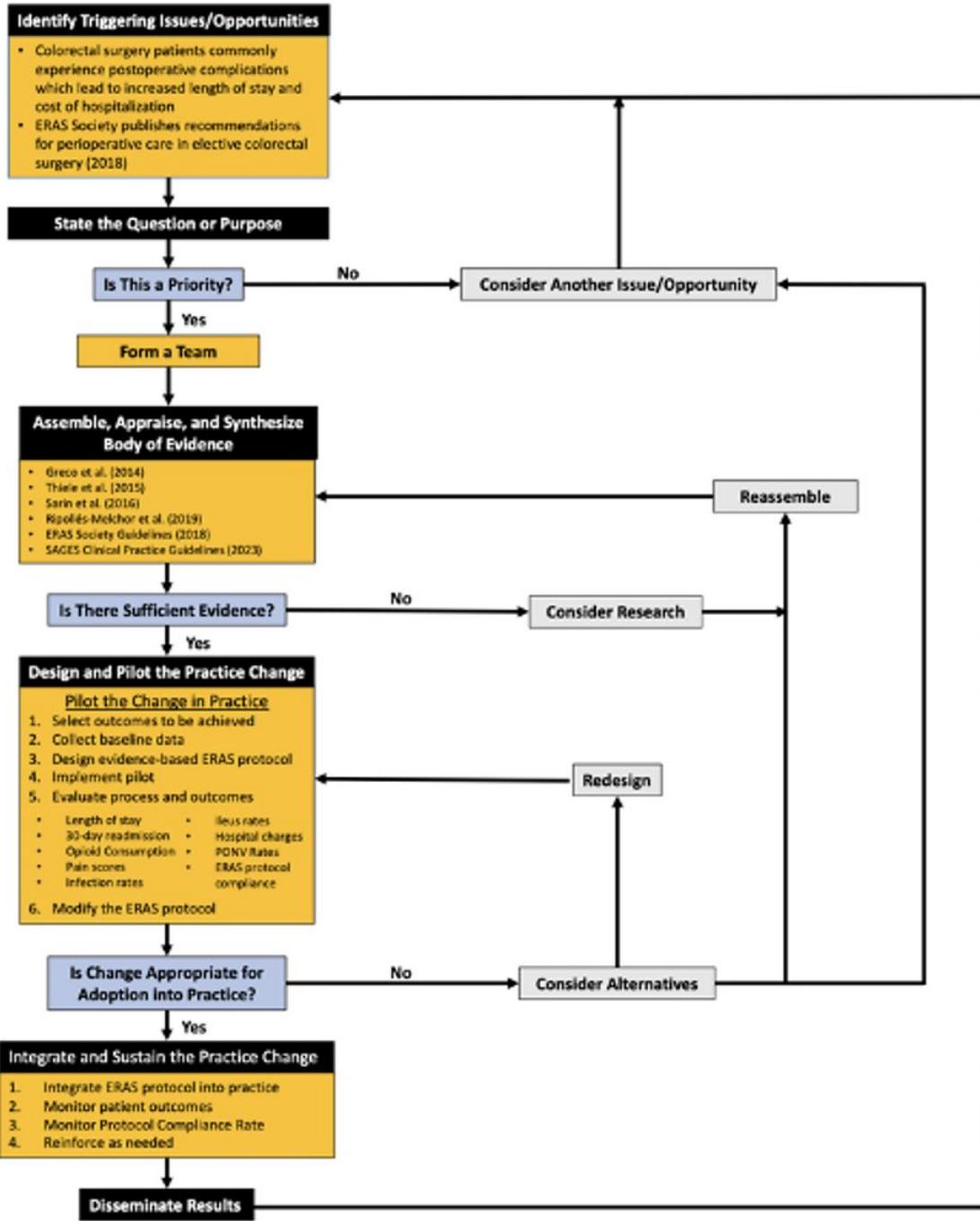
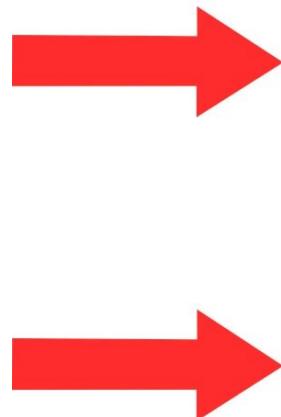
Measured Outcomes

Primary Outcomes

- Hospital LOS
- 30-day readmission

Secondary Outcomes


- Intraoperative and postoperative opioid consumption
- Postoperative pain burden
- Patient and provider compliance
- Comparison of two local anesthetics (Exparel vs. Ropivacaine) used for TAP blocks



Organizational Need

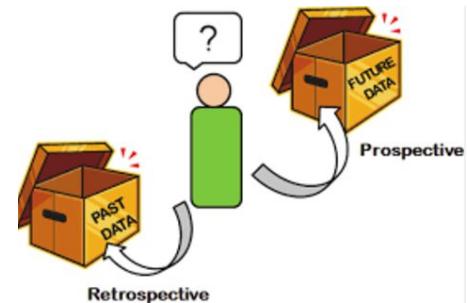
- SWOT analysis was performed to outline internal and external forces

- Strengths
- Weaknesses
- Opportunities
- Threats

Iowa Model of EBP

Note. Adapted from The Iowa Model-Revised, University of Iowa Hospitals and Clinics (2015)

Literature Review

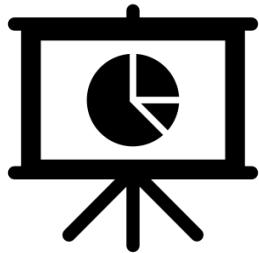

- 11 research studies were analyzed across various levels of evidence
- ERAS protocols have been shown to reduce hospital
 - LOS
 - SSI
 - Mean direct cost
 - Opioid consumption
 - Postoperative pain scores

& Increase in patient satisfaction scores

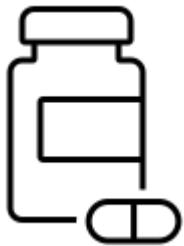
Design and Methodology

- Retrospective data collection
- 154 colorectal surgery patients at NMKH from January 2018 to March 2024
 - Non-ERAS (n=60)
 - ERAS (n=94)
- Data collected using existing hospital quality improvement reports and manual chart review

Data Analysis


- Categorical variables
 - Chi-square test
- Continuous Variables (parametric vs. non-parametric)
 - Independent samples t-test vs. Mann-Whitney U test
- Statistical analysis using IBM SPSS Statistics, Version 29.0.0.0.

Results


Baseline Characteristics Between Non-ERAS and ERAS Groups			
	Non-ERAS (n= 60)	ERAS (n=94)	p-value
Age (years) ($\pm SD$)	66.2 (± 13.8)	61.8 (± 15.6)	0.077
Sex	Male	32 (52.5%)	0.853
	Female	29 (47.5%)	
BMI		27.5	29.4
Smoker	Current	7 (11.7%)	0.425
	Former	23 (38.3%)	
DM	Type 1	0 (0%)	0.761
	Type 2 non-insulin	8 (13.3%)	
	Type 2 insulin	4 (6.7%)	
HTN		38 (63.3%)	56 (59.6%)
CAD		7 (11.7%)	7 (7.4%)
CHF		1 (1.7%)	5 (5.3%)
COPD		7 (11.7%)	8 (8.5%)
History of PONV		5 (8.3%)	11 (11.7%)
Physical Status Classification	1	0 (0%)	0.881
	2	28 (46.7%)	
	3	30 (50.0%)	
	4	2 (3.3%)	
Duration of procedure (minutes)		105	102

Primary Outcomes

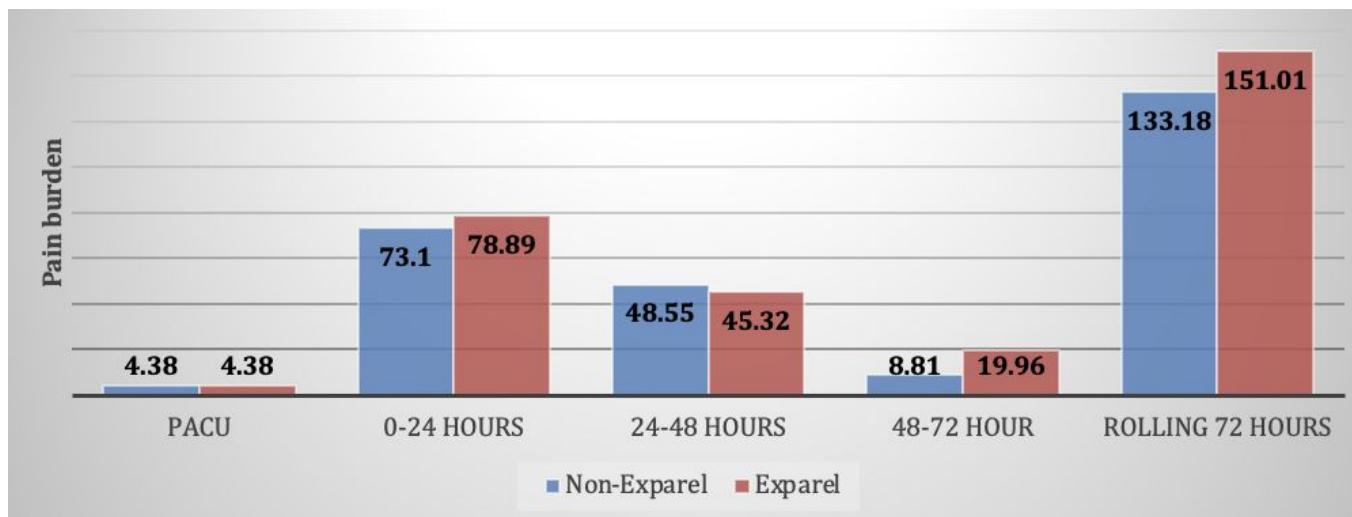
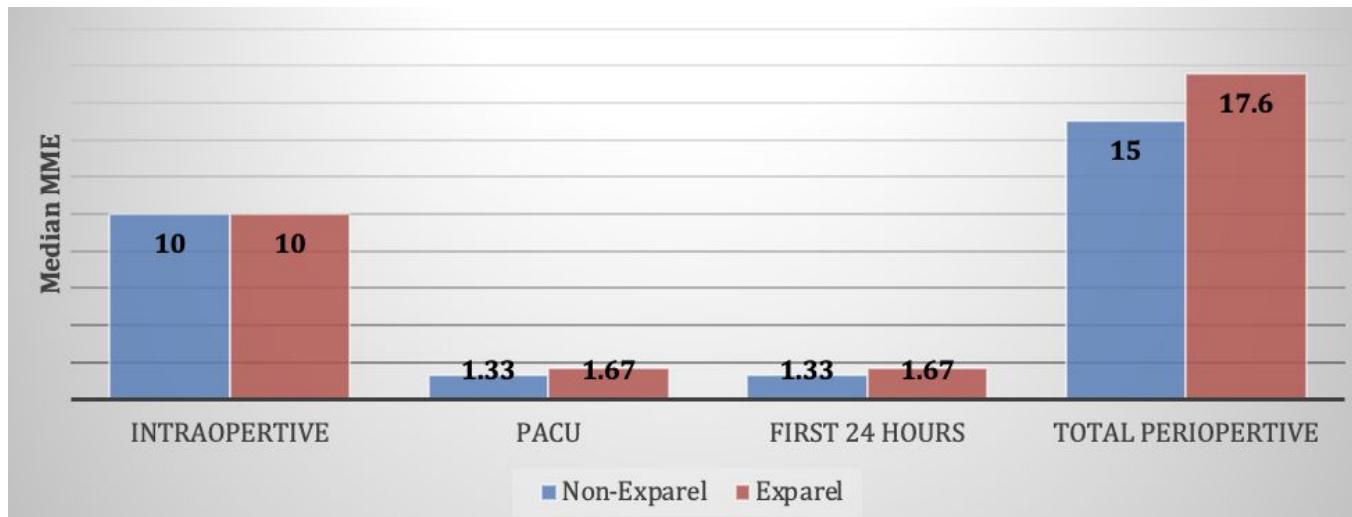
	Non-ERAS (n=60)	ERAS (n=94)	p-value
LOS (days)	3.03	2.28	0.006
Readmission within 30 days	5 (8.3%)	10 (10.6%)	0.64

Opioid Use

	Non-ERAS (n=60)	ERAS (n=94)	p-value
Intraoperative opioid use	10.33	10	0.30
Total perioperative opioid use	22.05	16.60	0.12
Postoperative opioid use first 24 hours	1.67	1.67	0.71
PACU opioid use	2.50	0	0.19

Note. MME: morphine milligram equivalents; PACU - post-anesthesia care unit.
 $p<0.05$

Pain Burden

	Non-ERAS (n=60)	ERAS (n=94)	p-value
Pain burden PACU	4.23	4.46	0.84
Pain burden 0-24 hours	80.52	72.90	0.38
Pain burden 24-48 hours	54.02	44.68	0.21
Pain burden 48-72 hours	32.55	13.18	0.31
Pain burden rolling 72 hours	166.17	128.65	0.16

Note. PACU - post-anesthesia care unit. p<0.05

- Pain burden was determined by calculating the total dose of analgesics administered over a specific time period, which the organization used as a proxy for the patient's pain experience.

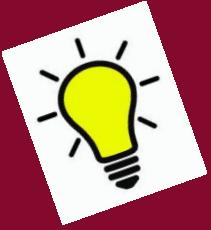
Exparel Vs. Ropivacaine

Compliance

	Non-ERAS (n=60)	ERAS (n=94)	p-value
Intraoperative IV fluids (ml)	1,250	1,000	0.009
Preoperative acetaminophen	40%	91.5%	< 0.001
Preoperative ibuprofen	41.7%	89.4%	< 0.001
Intraoperative ketamine	16.7%	31.9%	0.04
Intraoperative ketorolac	28.3%	42.6%	0.08
Intraoperative acetaminophen	50%	47.9%	0.80
Sugammadex	1.7%	26.6%	< 0.001
TAP block	51.7%	88.3%	< 0.001
Epidural analgesia	0%	0%	N/A
Intraoperative lidocaine infusion	0%	12.8%	0.004
Intraoperative propofol infusion for history of PONV	0%	25%	0.43

Note. IV = Intravenous; ml= milliliters; TAP = transversus abdominis plane; PONV = postoperative nausea and vomiting. p<0.05

Results



- ERAS group had a 25% reduction in median LOS (2.28 days vs. 3.03; $p=0.006$) without an increase in 30-day readmissions (5 vs 10; $p=0.64$)
- No statistically significant difference in opioid use or pain burden between the two groups
- Overall ERAS protocol compliance was 55.8%

Translation of Findings

- Shorter LOS suggests reduced costs for both the patient and the hospital.
- A significant amount of data was hard to access, not readily coded, and incomplete.
- Low protocol compliance may have been influenced by:
 - Provider adherence
 - Incomplete documentation
 - Limited researcher access to detailed protocol information.

Recommendations

- Validate the accuracy of pain scores, given the use of a non-traditional evaluation method
 - Evaluate pain scores using a validated measurement tool, such as the numeric pain scale or visual analog scale
- NMKH should promote protocol adherence through in-service education on the ERAS protocol and its components
- Assess protocol compliance monthly or semiannually annually by generating detailed data reports to enhance sustainability

References

